1.2電磁超聲技術(shù)
常規(guī)的超聲波探傷和測厚給無損檢測工作者帶來最大的不便就是需對探傷對象的表面進行處理,使其達到一定的表面粗糙度。電磁超聲波探傷與常規(guī)方法相比無需機械和液體耦合,進行鍋爐管道檢測時對沾染或結(jié)渣輕微的表面無需進行處理,大大減少了輔助性工作量。
從物理學(xué)可知,在交變的磁場中,金屬導(dǎo)體內(nèi)將產(chǎn)生渦流,同時該電流在磁場中會受到力的作用,金屬介質(zhì)在交變應(yīng)力的作用下將會產(chǎn)生機械波。當交變磁場的效率達到某一范圍時就會產(chǎn)生超聲波;與此相反,此效應(yīng)呈現(xiàn)可逆性。人們把用這種方法激發(fā)和接收的超聲波稱為電磁超聲。
目前,電磁超聲換能器可以象傳統(tǒng)的壓電晶片換能器一樣在金屬件中產(chǎn)生縱波、橫波、斜聲束以及聚焦聲束,可同常規(guī)的超聲波探傷一樣來檢查工作中的缺陷。這種換能器所具有的缺陷檢出能力和信噪比能夠與以往的壓電陶瓷換能器相媲美。電力工業(yè)部已將電磁超聲技術(shù)研究列入火力發(fā)電廠金屬材料10年科技發(fā)展規(guī)劃(草案)之中。美國材料工程協(xié)會為美國電力研究所研制的電磁超聲測厚裝置可測厚達1mm,準確度為0.05mm。
1.3蒸氣管道超聲波檢漏技術(shù)
蒸氣管道爆管前若能及時采取措施就可能消除爆管引起的潛在威脅。在無損檢測技術(shù)發(fā)展的今天,這一設(shè)想已成為現(xiàn)實。
蒸汽管損壞前的開始階段總是伴有耳聽不到的微小泄漏聲。這種泄漏隨時間的延續(xù)呈指數(shù)增長,一旦等到人耳可以聽到泄漏聲時,泄漏速度已經(jīng)很大,這時欲采取措施可能已經(jīng)來不及了。研究表明,蒸氣微小泄漏發(fā)出的聲波是寬頻帶的,包括人耳聽不到的次聲波和超聲波,其中的音頻信號因發(fā)電廠環(huán)境中的低頻機械噪聲較強而人耳聽不到。然而采用超聲波接收裝置,則在爆管前8~10h就可以接收到微小泄漏聲波中的超聲波分量。超聲波檢漏技術(shù)是由意大利、法國和英國的電力工業(yè)部門在70年代開發(fā)的,目前,在美國已廣泛地用于在役鍋爐管道的檢漏。據(jù)美國1986年對參加檢漏試驗的有關(guān)電廠的統(tǒng)計表明:在24次鍋爐管道泄漏事故中,有50%由聲學(xué)檢漏系統(tǒng)作出了早期警報;據(jù)分析,探測率低是由于在事故發(fā)生時有些聲檢漏探測系統(tǒng)還沒有全部投入運行。我國目前已經(jīng)開始了此方面技術(shù)的開發(fā)與研究工作。
2 結(jié)語
無損檢測鍋爐管道的常規(guī)方法及超聲波法、射線透照法,無疑在目前及將來都是主要的檢測手段。然而,從安全性、經(jīng)濟性觀點看,還應(yīng)向具有下述特征的先進無損檢測手段的方向發(fā)展:
?。?)盡可能減少人為因素,朝著自動化和智能化的方向發(fā)展;
?。?)能夠準確迅速地檢測鍋爐管壁厚度,管內(nèi)結(jié)垢厚度,氧化皮厚度以及腐蝕磨損、疲勞和高溫引起的材質(zhì)損傷情況;
(3)盡可能減少輔助性工作,不妨礙正常的檢修工作;
?。?)實現(xiàn)機組運行過程中的在線檢測和評價等。
隨著火力發(fā)電廠機組延長壽命工作的開展,鍋爐管道無損檢測(包括在線監(jiān)測)在確保熱力設(shè)備安全經(jīng)濟運行方面將起著越來越重要的作用。面對二十一世紀,廣大電力系統(tǒng)的無損檢測工作者,除了開展常規(guī)的無損檢測工作之外,還應(yīng)積極研究、開發(fā)和推廣無損檢測新技術(shù),朝著提高準確性和檢測效率,擴大檢測范圍的方面努力。