1.2火災(zāi)的預(yù)測預(yù)報(bào)技術(shù)
1.2.1煤自然發(fā)火危險(xiǎn)性的判定
20世紀(jì)80年代前,煤自然發(fā)火危險(xiǎn)性的判定沿用前蘇聯(lián)的著火溫度法鑒定煤自然發(fā)火傾向,其結(jié)果和開采后證實(shí)的情況基本相符,但對于高硫煤差異較大。
近年來,研究色譜動(dòng)態(tài)吸氧法測定吸氧量和吸氧速度,判定自然發(fā)火傾向,并研制了ZRJ-1型色譜自燃性測定儀,在煤礦已推廣使用。
在研究煤的自然發(fā)火期及其影響因素中,近年來采用了2種技術(shù)途徑:一是用煤堆實(shí)驗(yàn)裝置在模擬條件下測定并解算發(fā)火期;二是測定煤的吸氧速度、氧化反應(yīng)速度,以熱傳導(dǎo)及熱平衡原理推算最短自然發(fā)火期,并結(jié)合地質(zhì)、開采、通風(fēng)等影響因素的修正系數(shù)確定煤的發(fā)火期。
1.2.2自然發(fā)火預(yù)測預(yù)報(bào)
(1)預(yù)測預(yù)報(bào)指標(biāo)
過去礦井火災(zāi)預(yù)測預(yù)報(bào)指標(biāo)主要采用CO,但最新研究表明CO已不是在任何情況下都可作為惟一的和最靈敏可靠的判別煤自燃火災(zāi)的指標(biāo)。最新的研究結(jié)果為:使用CO、C2H4及C2H23個(gè)指標(biāo),綜合地將煤自然發(fā)火分為3個(gè)階段:①礦井風(fēng)流中出現(xiàn)10-6級(jí)CO時(shí)的緩慢氧化階段;②出現(xiàn)10-6級(jí)CO和C2H4時(shí)的加速氧化階段;③出現(xiàn)10-6級(jí)CO、C2H4和C2H2的激烈氧化階段,此時(shí)即將出現(xiàn)明火。應(yīng)用這3個(gè)指標(biāo),不僅可預(yù)測火災(zāi),而且還可判別其階段,據(jù)此而采取不同的防滅火技術(shù)措施。本項(xiàng)技術(shù)已在較多礦井中得到應(yīng)用,但對不同的煤層必須分別進(jìn)行模擬實(shí)驗(yàn),優(yōu)選其指標(biāo)的具體應(yīng)用值,才能正確地應(yīng)用該項(xiàng)技術(shù)。
(2)預(yù)測預(yù)報(bào)手段
預(yù)報(bào)自然發(fā)火的手段,在20世紀(jì)70年代前是用井下人工采氣樣、地面儀器分析,并結(jié)合溫度檢測和人的感知來判斷發(fā)火危險(xiǎn)性。80年代煤礦普及氣相色譜分析方法,并研究應(yīng)用束管監(jiān)測系統(tǒng)抽吸井下氣體、地面集中分析、微機(jī)自動(dòng)數(shù)據(jù)處理和預(yù)報(bào)自然發(fā)火。束管監(jiān)測系統(tǒng)已成為工作面自然發(fā)火預(yù)報(bào)和采空區(qū)注氮防火的主要監(jiān)測手段。
1.2.3外因火災(zāi)檢測系統(tǒng)
我國煤礦近年曾發(fā)生膠帶輸送機(jī)或機(jī)電硐室火災(zāi),并造成重大經(jīng)濟(jì)損失或人員重大傷亡。為此,近年相繼開發(fā)出幾種裝置和儀器設(shè)備,如煤炭科學(xué)研究總院重慶分院研制開發(fā)的KHJ-1型礦井火災(zāi)監(jiān)控系統(tǒng)及自動(dòng)滅火裝置以及MPZ-1A型膠帶輸送機(jī)自動(dòng)滅火裝置,它們由速差、溫度、煙霧、紫外線、熱敏電纜等5種傳感器和電源控制箱聯(lián)接,控制箱由單片微機(jī)實(shí)現(xiàn)監(jiān)測控制、智能判斷、控制噴灑泡沫或水噴霧滅火,為我國煤礦外因火災(zāi)的預(yù)測預(yù)報(bào)及防治增添了新的手段和能力。這些系統(tǒng)都是我國自己研制開發(fā)的產(chǎn)品,適應(yīng)我國的具體情況,可供有關(guān)礦井選用。
2、煤層自然發(fā)火機(jī)理
2.1煤體自燃的起因和過程
煤自燃的發(fā)生和發(fā)展是一個(gè)極其復(fù)雜的動(dòng)態(tài)變化的物理化學(xué)過程,其實(shí)質(zhì)就是一個(gè)緩慢地自動(dòng)放熱升溫最后引起燃燒的過程。該過程的關(guān)鍵有兩點(diǎn):一是熱量的自發(fā)產(chǎn)生;二是熱量的逐漸積聚。
導(dǎo)致煤在常溫下產(chǎn)生熱量的因素很多,如水對煤的潤濕熱、煤分子的水解熱、煤中含硫礦物質(zhì)水解及氧化熱、煤中細(xì)菌作用放出的熱量、煤對氧的物理吸附熱、煤對氧的化學(xué)吸附熱以及煤與氧的化學(xué)反應(yīng)熱等等。這些因素對于煤體自發(fā)產(chǎn)生熱量都起著一定的積極作用,在某些條件下甚至是決定性的作用。但大量的研究工作發(fā)現(xiàn)煤的自燃主要是由煤氧復(fù)合作用放出熱量而引起,煤與空氣接觸后首先發(fā)生煤體對氧的物理吸附,之后又發(fā)生煤氧化學(xué)吸附和化學(xué)反應(yīng)。
導(dǎo)致煤體自燃除熱量的自發(fā)產(chǎn)生之外,另一關(guān)鍵要素就是自發(fā)產(chǎn)生的熱量被逐漸積聚。煤體自燃所需熱量的積聚不但與煤氧復(fù)合作用放出熱量有關(guān),還與煤體的散熱條件有關(guān)。實(shí)際條件下,煤體的放熱與煤體表面活性結(jié)構(gòu)種類和數(shù)量、煤體的溫度、氧氣濃度等因素有關(guān);自燃煤體的散熱條件則主要包括煤體的空隙率、漏風(fēng)強(qiáng)度以及周圍環(huán)境的溫度等。當(dāng)煤體的放熱量大于煤體的散熱量時(shí),煤體熱量被積聚,煤體溫度上升;當(dāng)煤體放熱量小于散熱量時(shí),則煤體溫度保持穩(wěn)定。煤體熱量積聚過程,也就是煤體自然的發(fā)展過程,而自燃正是煤體放熱與散熱這對矛盾運(yùn)動(dòng)發(fā)展過程的結(jié)果之一。
綜上所述,煤自然發(fā)火主要是由空氣滲透進(jìn)入松散煤體,空氣中的氧與煤分子表面的活性結(jié)構(gòu)接觸,發(fā)生物理吸附、化學(xué)吸附及化學(xué)反應(yīng),同時(shí)放出熱量,在一定的蓄熱環(huán)境下,煤體不斷地氧化、放熱、升溫,當(dāng)煤溫超過臨界溫度后,煤體繼續(xù)升溫,達(dá)到煤的著火點(diǎn)溫度,最終導(dǎo)致煤體燃燒。
巷道在掘進(jìn)過程中,煤體暴露于新鮮空氣中,在采動(dòng)壓力作用下受壓而破碎、離層,風(fēng)流在各種動(dòng)力作用下滲透進(jìn)入煤體,使煤體氧化放熱。當(dāng)煤體放熱速率大于周圍環(huán)境散熱速率時(shí),引起升溫,最后導(dǎo)致自燃。由于巷道煤層所處位置、松散煤體堆積形態(tài)、漏風(fēng)動(dòng)力、散熱條件等與一般煤層不同,具有自己的特性,尤其是綜放無煤柱開采。因此,巷道煤層自燃除了具有一般煤層自燃的共性之外,還有自己的特性。
2.2煤層自燃特點(diǎn)
2.2.1由于受煤礦開采條件及采煤工藝的限制,工作面布置走向長度大,上千米煤巷采用綜掘一次完成,因而巷道煤體暴露于空氣的時(shí)間較長,一般均超過煤層最短自然發(fā)火期。
2.2.2巷道內(nèi)因火災(zāi)大多起始于距巷道表面一定深度的中部。在采動(dòng)壓力的作用下,暴露面處的煤體破碎程度較大,漏風(fēng)阻力小,漏風(fēng)強(qiáng)度較大,超過引起煤自燃的上限漏風(fēng)強(qiáng)度,熱量不能積聚,無法形成自熱高溫點(diǎn);離暴露面較遠(yuǎn)的深部煤體,由于漏風(fēng)通道不暢通,漏風(fēng)阻力較大,氧氣滲透到該處時(shí)濃度已很小,低于煤自燃的下限氧濃度,處于窒息狀態(tài),亦無法形成自熱高溫點(diǎn);而在距暴露面一定深度的中部,漏風(fēng)強(qiáng)度適中,風(fēng)流速度慢,氧氣濃度適宜,最容易滿足煤自燃的條件而形成自熱高溫點(diǎn)。
2.2.3煤體導(dǎo)熱性差,火源隱蔽,往往是在發(fā)現(xiàn)巷道煤體表面溫度異常時(shí),內(nèi)部火勢已形成。自燃火源點(diǎn)逆著風(fēng)流方向發(fā)展,有害氣體順著風(fēng)流方向流動(dòng),有時(shí)只見有毒有害氣體而不見明火,使尋找火源點(diǎn)的工作非常困難。